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Abstract

Language implementors frequently make pre-emptive decisions concerning the exact
implementations of language features. These decisions constrain programmers' control over
their computations and may tempt them to write involuted code to obtain special (or efficient)
effects. In many cases, we can distinguish some properties of a language facility that are
essential to the semantics and other properties that are incidental. Recent abstraction
techniques emphasize dealing with such distinctions by separating the properties that are
necessary to preserve the semantics from the details for which some decision must be made
but many choices are adequate. We suggest here that these abstraction techniques can be
applied to the probgm of pre-emptive language decisions by specifying the essential
properties of languages facilities, in a sikelqton base language and defining interfaces that will
accept a variety of implementations that differ in other details./,)
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1. Introduction

Traditionally, the designers and implementors of programming languages have made a

number of decisions about the nature and representation of various language features that

the authors feel are unnecessarily pre-emptive. For example, such decisions are commonly

made about arrays: most languages support only rectangular arrays, and each implementation

generally uses some particular representation, such as row-major order, for all arrays.

Neither of these choices is logically necessary: a language could, for example, permit

triangular arrays or arrays in which each row has a different length, and there are many

possible representations even for simple rectangular arrays.

In many, even most, situations, the kinds of language and implementation decisions to which

we refer are beneficial. The programmer usually doesn't care what representation is chosen

for arrays, for example, and the default decisions have been refined through long experience

to yield representations that are broadly acceptable. Unfortunately, precisely the same

decisions occasionally have a detrimental effect on both program clarity (structure) and

efficiency. The authors have seen numerous examples of FORTRAN programs that store two

triangular matrices (one of them transposed) in the same FORTRAN array. The resulting

program is generally extremely difficult to understand since a term like A(JJ) may refer to an

element of either matrix. In addition, it is error-prone because the correspondence of

subscripts to rows and columns is not consistent. Such programs may als9 be slower than

one might like since most implementations are tuned to varying the same subscript position

most rapidly for all arrays; since one matrix is transposed in the array, access to one or the

other is necessarily non-optimal.

Although one may question the programmer's wisdom in packing two matrices together in

this way, the fault actually lies more with FORTRAN and its implementations than with the

programmer. The programmer needed a compactly implemented abstraction (triangular arrays),

but the language/implementation combination neither provided it nor provided a way to

define it. In at least some of these cases, the space that would have been wasted by using

two full rectangular arrays would have prevented the program from running at all! Thus, the

programmer really had little choice.

The purpose of this note is to advocate a somewhat different philosophy of language

design. We will explore a collection of pre-emptive decisions, and we will observe that the

abstraction facilities of modern languages such as Alphard (Wulf 76] CLU [Liskov 771 Euclid

[Lampson 77), Gypsy (Ambler 77, Ada [|chbiah 79, and so on provide an abstraction facility

adequate to express the kinds of decisions that have traditionally been pre-empted. These

abstraction facilities, coupled with a philosophy that the decisions should not be pre-empted
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by the language design, can substantially enhance the extent to which languages permit us to

express well-strucured and efficient programs.

In many cases, we can readily distinguish some properties of a language feature that are

essential to its semantics and other properties that are incidental. An array implementation,

for example, must establish a one-to-one correspondence between subscript values and

memory locations. However, neither the order in which the locations are laid out in memory

nor the algorithm used to achieve the mapping is essential to achieving the desired effect.

Since abstraction facilities are concerned with precisely the distinction between specification
(semantics) and implementation, we shall advocate a language design philosophy in which only

the essential semantics of language facilities are defined for the base language, and a data

abstraction mechanism permits the programmer to provide a variety of implementations that

differ only in semantically inessential waysI. The semantics of the language therefore

become "relative" to the semantics of the programmer-supplied components of the

implementation, and the correctness of the whole will depend on the correctness of the

programmer-supplied components. Thus, the "essential semantics" of the language includes a

collection of properties that must be proven for the programmer-supplied implementations.

The proofs of these properties are no different from those for programmer-supplied

definitions that extend the language, so the safety of the resulting system is in no way

compromised.

It is perhaps worth noting the difference between the philosophy that we shall espouse

and one that we believe to be prevalant in the data abstraction language community. In large

measure, the popular image of data abstraction mechanisms is that they provide a weak, but

important, form of language extension. That is, they provide the means by which one extends

a language "upward" to include new data types not present in the base language (which is

generally chosen to be roughly the level of Pascal). The authors wholeheartedly subscribe to

the idea of upward extension; it is an important ingredient of modern notions of software

engineering. However, we also believe that control of decisions below the level of a

Pascal-like language are also important -- and that is the issue we wish to explore in this

note.

1Note that default definitions should mlill be provided for tie programmer who chooses not to be concerned with

these details.
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2. Traditionally Pre-empled Decisions

In. this section we shall simply list a set of decisions that have traditionally been

pre-empted -- unnecessarily, we believe. This list is not intended to be exhaustive; the

reader may well be able to add other decisions. Rather, it is intended as a basis for

discussing some ways in which data abstraction and language changes could help to bring

some of the decisions under the programmer's control. We shall also give some brief

examples of facilities that have not pre-empted these decisions; the intent of these comments

is likewise not to be exhaustive, but rather to illustrate that pre-emption is not a necessary

property of language design. Finally, note that not all of these issues arise in all languages.

In particular, some appear only in languages that provide a way for a programmer to define

new data types. We include those issues here, however, because an important class of new

languages is involved and because they illustrate some of the interactions among features

that may occur in the process of language design.

- Storage layout: Several decisions are actually involved here, including the
treatments of scalar representations, array representations, record element
representations, and packing. There are several alternative choices for each of
these, and it is- not a priori clear which is best; indeed it is clear that no single
one is best in all cases. Various degrees of control over these decisions have
been provided in languages. Many older languages (e.g., FORTRAN and ALGOL)
provided no control at all. Some languages have provided limited control in the
form of specification that a record is to be "packed" -- but not a detailed
specification of the packing itself. Other languages, such as Ada, have* permitted
detailed control oyer packing strategy, size of variables, -internal values for
elements of an enumeration, and so on; even Ada, however, does not allow
(re)definition of array representations. In contrast, Bliss substantially departs
from the "no control" approach -- in Bliss the programmer must provide a
macro-like definition of the accessing algorithm for every new data structure,
and thus must specify every detail of the representation (Section 4.2 elaborates
on this).

- Declarations, initialization, finalization: In most programming languages, the
declaration of a variable may cause several things to happen: allocation of space
for the variable, binding of the name to the address (or offset) of this space, and
initialization of the value of the variable. In addition, it may imply some
"finalization" actions when control leaves the scope in which the variable is
declared, most notably deallocation of the space. Unfortunately, these actions
are usually only defined for the base types of the language and are simply
extended on a default basis for programmer-defined types. To support some
aspects of modern programming methodology, however, it is necessary for the
programmer to control these actions. For example, type-specific initialization
actions may be necessary in order to establish an invariant property of the type
(that is, to assure a valid initial value). Alphard provides full initialization and
finalization facilities; Ada provides limited initialization facilities that can be used
to achieve full initialization with minor circumlocution.
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- Built-in operators and the scmantics of assignment and equality: The readability
of a program is substantially enhanced when infix notation can be used for
operators, particularly when the the newly defined types are familiar
mathematical ones (e.g., complex). Many languages (Schuman 71] have provided
ways to extend, or overload, the built-in operators; both Algol 68 and Ada
provide this facility, for example. Unfortunately, these languages have provided
no way to control the additional properties that are usually, but not always,
assumed for the built-in operators (for example, is an overloading of '' '
commutative and associative?). Even in languages that permit overloading,
overloading of assignment and equality are often subject to special restrictions
or prohibited entirely; we suspect that this is because the "normal" semantics of
these operations are so important to a program. However, type-specific
definitions of these operations can be made safely and are sometimes essential
to preserve the semantics of a new type.

Dynamic storage allocation: Storage allocators typically incorporate policies
concerning search strategy, garbage collection, collapsing adjacent free cells to
limit fragmentation, and so on. Problem-specific characteristics strongly
influence the best decisions about these policies. For example, in some cases
prior knowledge about request sizes or order of allocation and deallocation may
make extremely efficient allocation possible. Euclid provides zones to allow
programmers to define specific allocation algorithms; this mechanism is discussed
in Section 4.3. Ada permits rudimentary control over dynamic storage allocation
via a mechanism for determining the size of the storage pool for each type of
dynamically-allocated variable, but the algorithm for managing this storage pool
is fixed for each implementation.

- Loop controL: When a program iterates systematically over a data structure, the
designer of that data structure is in a much better position than the language
designer to know the most appropriate or efficient order for processing the
elements of the structure. In addition, different traversal patterns may be
preferred in various situations. Alphard and CLU provide means for the designer
of a data structure to provide algorithms for supplying elements to loops. The
Alphard scheme is discussed in Section 4.1.

- Scheduling and synchronization: In specific systems, the programmer may have
the need or desire to express the relative priorities or deadlines of separate
tasks. Alternatively, the programmer may have knowledge of code or data
sharing that makes co-scheduling of certain tasks vastly more efficient than
independent scheduling. Similarly, certain synchronization and communication
schemes may be both more natural and more efficient for certain problem
decompositions: Parallelism, of course, has not been common in languages other
than those for simulation and real-time applications. Languages such as Ada,
Concurrent Pascal [Brinch Hansen 753 and Modula (Wirth 77] have followed the
traditional approach and provided single facilities and implementations -- the
maximum variability being the ability to define the relative priority of processes.

There are, of course, many other candidates for non-preemptive decisions; among them are

type-specific input/output (including the mapping to and from literals of a user-defined type),

the details of procedure invocation and parameter binding, and the processing of exceptions

(especially the policy for locating a handler).
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3. Sdrme Consequences of Pre-emptive Decisions

In the introduction we alluded to the negative consequences of pre-emptive decisions; in

this section we will amplify on those remarks. In reading this, the reader should remember

that often the default decisions made by language designers and implementors are perfectly

adequate. We are not recommending that all low level decisions should be made by aU

programmers for every program they write. Rather, we are recommending that, in those

cases where the default decision may be inappropriate, it should be possible for the

programmer !o override it in a safe and structured manner. In practice, we expect that the

decisions to change implementations selected by the language designers will usually be made

as part of the tuning process thai goes on in the final stages of a project; in addition, we

expect that the modifications will generally be made by specialists in such matters, not by all

programmers as a matter of course.

The fatal flaw of pre-emptive language decisions arises from their conflict with one of the

most fundamental precepts of structured programming, originally enunciated by Parnas

[Parnas 72]: the order in which design decisions are made is crucial. One must flrst make

those global decisions that are least likely to be changed; one should postpone those

decisions that are most likely to be changed. Decisions cannot be postponed forever, of

course, but one should wait until the maximal information is available. This is the essenco of

the "top-down" design methodology. One first makes (only). high-level organizational

decisions. Only through refinement does one work down to the lowest level. -

In a purely top-down design, the last decisions to be made are usually the lowest level

representational choices. The decisions we have termed "pre-emptive" are also, generally

speaking, relatively low level; indeed, the conventional rationale for pre-empting them is that

they are so low-level that "the programmer shouldn't need to worry about them".

Unfortunately, while there is a good deal of truth in this, it is precisely the point on which the

traditional approach to language design runs afoul of a top-down approach to program

design. Making representational choices at language design or implementation time is about

as early as possible -- not as late as possible. Consequently, they are necessarily made with

only a vague image of their typical use -- not a detailed knowledge of their use in a specific

program.

We can see many consequences of the general argument above:

-Introducing circuntlocutions: Situations such as the packing of two triangular
matrices in one array, mentioned in the introduction, are circumlocutions forced
upon the programmer. The basic algorithm of a program, although inherently
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simple, is obscured by the need to "program around" a limitation of either a
language or its implementation. Had the programmer really been able to follow a
top-down design strategy, that is follow it further "down", the program would
have been much clearer.

- Preventing fceasibc optinzizations: A good optimizing compiler can substantially
improve the efficiency of a program. However, the most important improvements
in a program's efficiency derive from good data structure and algorithm choices.
If a language does not provide the appropriate structure the programmer will be
forced either to use a less efficient algorithm or to encode the structure
explicitly in terms of the structures that are available. Unfortunately, the latter
alternative carries its own set of problems. A compiler, especially an optimizing
one, must. preserve the semantics of the language constructs; moreover,
compilers cannot deduce a programmer's intent. Thus, directly and explicitly
encoding one structure in terms of another usually results in much less effective
optimization than would have been possible if the original structure had been
defined in a straight-forward manner. This is particularly true if complicated
access algorithms must also be explicitly encoded. Again, if the programmer had
really been allowed to follow a top-down design, the efficient representation
would have been used -- leading to an intrinsically better program as well as
one that the optimizer can manage better.

- Discouraging the use of high-lczuet languages: Although most people now agree
that the use of high-level languages is desirable, the fact remains that many
major systems are still written in assembly language. There are, of course, many
reasons for this -- only some of which can be addressed by the present
proposal. However, in many cases the reasons for the choice of assembly
language are related to the absolute need for both greater efficiency and more
control over low-level decisions than is provided by most contemporary
languages.

In addition to the methodological and pragmatic arguments above, there is an analogy with

the theoreticians' experience with specifications: if a specification contains more detail than is

absolutely necessary, it may constrain the implementation in such a way as to eliminate

reasonable alternatives. Moreover, a specification is a guarantee; all implementations of the

specification are obligated to follow aU of it. Thus, if the specification contains too much detail

-- and someone comes to depend on that detail -- all future implementations will be obligated

to provide that detail 2 . Both of these effects are precisely what we observe when language

designs, or their implementations, bind decisions too early.

2 Recal, for example, he trauma induced by the decision to chants the oritinal definition of FORTRAN arrays as being
"backwards" in memory.
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4. A Proposed Approach and Examples

Faced with the arguments above, one might follow any of several paths. One possibility is

to avoid high-level languages altogether; indeed, Parnas has advocated the use of a powerful

macro processor instead of a high-level language [Parnas 74]. Such a processor would,

presumably, leave all representational decisions under programmer control. However, it

would provide no guidance about good organization or style, and it would support

idiosyncratic notation rather than standard syntax with uniform interpretations. This extreme

seems neither necessary nor desirable. Let's consider an alternative.

As we noted in the introduction, research on abstraction facilities has focused on a

particular form of language extension. It has been concerned primarily with facilities that

permit the programmer to define new, application-specific data types in terms of a

predefined set supplied by the language. Among the facilities that are now commonly

provided by data abstraction languages are:

- Separation of specification and inplementation: While not strictly necessary
from a logical standpoint, this separation aids the human reader/writer and, in
particular, helps to hide the implementation (Parnas 71] and define a module
boundary. When the specification is used as the sole source of information
about a module, maintainability is enhanced because assumptions shared between
the user and the implementor are explicit.

- Encapsulation: Encapsulation permits the definer of an abstraction to more
tightly control the properties (notably representations and operations) that are
visible to the user. Encapsulation facilities of a language can enforce the policy
of separating specification and implementation information.

- Overloading: Overloading of operation names permits the definer of an
abstraction to mask the distinction between those abstractions that are primitive
to the language and those that are programmer-defined. This substantially
enhances readability.

- Ceneric definitions: Again, while not strictly necessary, generic definitions permit
the abstraction definer to cover a broader class of abstractions with a single
definition. Indeed, the presence of the generic facility further focuses ones
attention on the essential properties of a definition without constraining
irrelevant, but visible-detail.

Now let us consider using the same basic approach and the same basic abstraction features

for the design of a language. The design will consist of several components:

(1) A syntactic definition. The base syntax is not of itself particularly crucial;
presumably it will be similar to the Pascal derivatives in the data abstraction
milieu.
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(2) A semantic definition. Unlike the semantic definitions of most contemporary
languages, the se',antics for this language will be "incomplete" in that it will
specify essential properties, but not all details, for some constructs. For any
application, the semantics of those constructs will be fleshed out by
implementations that preserve the essential properties.

(3) A list of specifications of "essential properties" for the constructs left incomplete
in (2). These specifications are not merely "suggestions to the implementer";
they place formal constraints on the possible implementations. Any abstract
definition whose specification assures at least these properties of a construct
will provide an acceptable implementation of that construct. Some of these may
be simple (such as a specification for "boolean"); others may be generic (such as
that for a "generator" -- see [Shaw 77] and below).

(4) A useful implementation for each of the abstractions listed above. These will be
the default implementations; they correspond to the pre-empted decisions in
traditional languages.

Let's consider a simple example of this sort of design approach. The RED candidate for

Ada [Nestor 79] defined a data type data lock (essentially a mutex semaphore) and a region

statement. Informally, the operations on data locks were Lock and UnLock with semantics

similar to Dijkstra's P and V on boolean (mulex) semaphores. The form and semantics of the

region statement are illustrated by the following example:

y.P L: data_lock;

region L o, . . . end reabol

The reption statement implicitly performs a Lock on L before executing its body and

guarantees that it will perform an UnLock on L on any exit from the body 3 .

RED did not, however, demand that the variable mentioned in the region statement (L

above) be of the pre-defined type, data lock. Rather, the language merely defined that the

region statement guaranteed to invoke Lock(L) and UnLock(L) at the appropriate places --

and defined what the semantics of these operations had to be. The pre-defined type

datalock satisfied these semantics and this made the Etjon statement immediately useful,

but the user was free to define another type that satisfied these specifications and use it

with the region statement. Doing so gave the programmer control over, for example,

scheduling and resource allocation decisions that would normally have been pre-empted by

the implementation. At the same time, the language did predefine datalocks so that the

3 This guaranlee includes exits causod by exceptions Ihal are not handled by th, body, retur- exit and oto
statlements in the body, abiiormal terminations of the teok in which the body is executing, and so on.
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programmer who did not need more elaborale facilities or policies needn't be concerned with

defining them.

In the following subsections we will explore a number of examples that illustrate how data

abstraction can be used 'o avoid pre-cmptive decisions. Each of these examples shares

several attributes of the region statement:

The steps involved in defining a flexible facility whose details are under
programmer control will usually be (1) to reduce a distributed effect -- such as
dynamic storage allocation, synchronization, or iteration -- to a (small) set of
events, (2) to carefully delineate the effects that must take place in those events
(the "e!zsential semantics") and the variability that can be accommodated, and
then (3) to give the programmer control over what happens at those points
within the stated limits of variability.

In order to turn control of incidental effects over to the programmer, we will
define both a feature (generally an expression or statement) and one or more
related abstract types. The semantics of the statement will be defined in terms
of operations on the type(s). Constraints on the operations that the programmer
is permitted to supply will enforce the necessary semantics.

Ideally, a full implementation of our proposal would involve a formal semantic definition of

each of the types, their operations and the statements that relate to them. Moreover, ideally,

programmer-defined implementations would be mechanically verified against these

specifications, thus ensurthg the validity of the whole. Alas, the technology does not seem

quite up to either of these ideals -- as yet. The lack of this technology, however, does not

prevent us from anticipating it by adopting the language design approach proposed here.

4.1. Loop Control

In [Shaw 77], the authors (with Ralph London) discussed a good example of the kind of

language design approach that we are advocating here. The point at issue is iteration

statements such as DO in. FORTRAN and for in the Algol-Pascal family; both the definitions and

the implementations of these constructs unnecessarily pre-empt too many decisions. Consider

the Pascal program fragment,

SUm = 0:
g..i=1 to n d2

sum := sum + AM]:

Clearly the purpose of this fragment is to form the sum of the elements of A in sum.

However, the code is not an ideal expression of this: it specifies an explicit order for

accessing the elements of A even though the order is immaterial, it refers to the variable A

which we must presume is the size of A, and it uses the literal I which we must presume is
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the lower bound of the index of A. It would have been much belier if we could have simply

said "for each element of A, add that element once to sun". Doing so would certainly have
been clearer -- and it might have been more efficient as well since most contemporary
computers are a bit better at loops that count down to zero, and the less specific loop
statement would permit a decrementing implementation.

Now consider another Pascal program fragment for a similar task:

sum := 0;
p := B:
while p <> nil -.o

kgin sum := sum+p^.data; p := p^.link 01

This fragment forms the-sum of the elements of B in sunt. In this case, however, the data
structure is a list, and as much code is devoted to tracing down the list as to forming the sum;
the code has specific deficiencies comparable to those of the previous example.

These two examples serve to illustrate an even more serious deficiency. Each fragment
makes a very strong suggestion about the representation of the data structure that contains
the elements to be summed. This is a violation of the principle that such information should
be localized -- every loop that processes the elements of the structure is affected.

As is illustrated by the second loop, the desire to iterate over the elements of a type is

not limited to arrays. Indeed, most types, including programmer-defined ones, have one or

more natural traversal orders. The natural traversals over the integers, for example, include

increasing and decreasing intervals; these give rise to the common "stepping" forms of the
iteration statement. In Alphard we provided a means for the programmer to define traversals

for arbitrary types. In particular, we defined a for statement whose semantics are relative to
an abstraction ca!led a generator. By definition, a generator is an abstraction that provides a
collection of operations with specified properties. To illustrate, the Pascal loop above could
be written in Alphard as:

sum := 0;
Lo x LM I nvec(A) d2 sum 1= sum + x 9A

Here Inrec is a generator; intuitively, it provides the sequence of values from the array A

The formal definilion of generators and the for statement are beyond the scope of this
paper, but essentially a generator provides five operations: (1) start to initialize the loop, (2)
done to determine whether the loop is finished, (3) ualtie to get the value of the current

sequence element, (4) next to step to the next sequence element, and (5) finish which
performs any neccssary clean-up. The for statement is defined to invoke these operations at
obvious points; its semantics are captured in terms of a proof rule and a set of assumptions

about the generator operations.
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Of course, Alphard predefined a number of generators, including the traditional "stepping"

forms, fIwec (as used above), and others. However, the programmer ,as not limited to these

alone. Any abstract definition that provided the proper operations could be used as a

generator. Of course, in defining a generator, the programmer assumes the responsibility for

verifying the assumptions that the for statement makes about generators.

4.2. Storage Layout

It has long been recognized that a compiler's decision about data structure layout isn't

always the best one. Early languages did nothing about the problem except occasionally to

provide explicit control of the size and position of fields in a record (Cobol 60] [Air Force

76]. More recently, concerns for efficient storage utilization have motivated features, such as

Pascal's packed attribute (Jensen 74], that allow the programmer to select from a short menu

of packing strategies without determining field placement explicitly. This packing control may

also extend to aggregates other than records.

Unfortunately, control over the static placement of fields in records isn't enough. The

arrangement of data may change dynamically, or the mapping between indices and elements

may be complex, or compile-time binding of names to locations (or even to offsets in the

stack) may be inadequate for some other reason. Because of the rich collection of

possibilities for mapping data accesses, at the present time it does not appear (to us) that

any purely declarative mechanism is adequate for describing the entire, useful collection.

Lacking such a declarative mechanism, the only sufficiently powerful mechanism appears to be

an algorithmic description of the accessing algorithm -- that is, a means of supplying an

arbitrary computation.

One alternative is to allow the programmer to specify arbitrary computations to be

performed when a name is accessed in either a right-hand (fetch) context or in a left-hand

(store) context. Such a scheme is described by Geschke and Mitchell in (Geschke 75]

Although this clearly supports arbitrary representations it is, in a sense, too rich. That is, no

built-in constraints ensure that the computations correspond to the reader's sense of what it

is appropriate for an assignment to do. Even the example in [Geschke 75] illustrates this:

The authors propose defining a Vector data type (point in 2-space) that supports manipulation

of both polar and Cartesian interpretations of the value. The effect is to provide what

appear to be record fields (X, Y, Rho, Theta) that interact in non-obvious ways; the value of,

say, Rho can be affected not only by assignments to Rho, but also by assignments to X and V.

From the standpoint of program verification, this corresponds to violating the assignment

axioms for the four fields.
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An intermediate position is to insist on a correspondence between names and variables
(locations) and to provide a mechanism for associating an address-calculation algorithm
(sometimes called a scl r -or) with each name. Additional protection is needed to guarantee
the independence of these definitions, but if an address calculation is associated with the
program name, the left-side and right-side calculations will at least be consistent. Such a
mechanism is provided by structures in Bliss [Wulf 71]. A structure is very much like a macro

except that parameters may be bound at the declaration site as well as at the use site. For

example, the FORTRAN array

DIM A(100,25)

A(I ,)=X

would be expressed in Bliss as a structure declaration (to define the notion of a

two-dimensional array), followed by code analogous to the original FORTRAN.

structure FORTARY[a,b] = [a*b](.FORTARY+(a*(.b-1))+(.a-1)):
own A: FORTARY[ 100,251:

A[IJ] = X

The details of this code are irrelevant (especially the dots)4 , but in the structure declaration,
the phrase "[r:l:b]" specifies the size of the area to be allocated and the remainder of the
declaration specifies the accessing algorithm. In keeping with the general Bliss philosophy,
there is no concern about safety or aliasing. The similar construct in Alphard, a selector, must

guarantee that there are no extraneous side effects and preserve the properties of the
assignment axiom.

Unfortunately, if selectors are prohibited from having side effects, they are not strong
enough to handle some reasonable cases. Consider, for example, the problem of
storage-efficient implementations of sparse arrays. No problem arises in selecting an element
for which space has already been allocated, and a right-hand side access of a zero (or
nonexistent) element can be handled by sharing one copy of zero among all such elements. A
left-hand side access of an element that is currently nonexistent will, however, require side

4 1n evaluating A(l,J, & and b are the values supplied in the declaration, .a and .b are I and J and, FORTARY is the
address of the first word of A.
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effects in the form of storage allocation or rearrangement of the data structure 5 . Thus we

believe that some of the current alternatives for managing storage layout are too rich and

others are too meager. We suspect that the resolution of the problem lies in finding a way to

specify suitable constraints on an existing mechanism, not in the design of yet another

mechanism.

4.3. Storage Allocation and Management

Pre-emptive decisions often deal with distributed effects in the program -- that is, with

background computations that are not directly triggered by explicit operations in the code.

Storage management is one of the most conspicuous of such cases:

- Allocation may be caused by block entry, explicit requests, or as side effects of
primitive operations (e.g., CONS in LISP).

Deallocation may be explicit, but it is more often an implicit effect of block exit
or unreachability.

The housekeeping for anything more complex than nested block structure (i.e., a
stack allocation method) often requires processes such as garbage collection that
are driven by interactions of individual decisions (i.e., the state of the heap)
rather than by the individual allocation decisions.

Many algorithms have been devised for managing dynamic storage; these were classified by

[Weinstock 76]. This study confirmed that no single allocation strategy is superior to the

others, and that the special knowledge that is often available about particular situations can

make a significant difference in the performance of the allocator. Programs written in

assembly language can (often must) do their own storage management, but this degree of

control is usually sacrificed in the move to a high-level language.

The most extensive language-level response we are aware of is Euclid's facility for

collections and zones. In Euclid, dynamically allocated variables draw their storage from pools

called collections, and each variable of a pointer' type is associated with one of these

collections. Although the primary motivation for introducing collections was to control

aliasing, they have also been used as the units of storage management. Two policies are

selected independently for each collection:

-The variables of the collection may be reference-counted (and automatically
deallocated when the counts go to zero) or not.

5 1ndeed, in some implementations assignment of a zero value to an element that was previously nonzero may ailo
require side effects I free the element.
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-A storage management module, called a zone, may be associated with the
collection.

Although the Euclid solution does not deal with the problem of distributed effects (it isn't

possible to write a garbage-collecting allocator, for example), it does illustrate the

decomposition we have in mind here.

To declare a storage pool for dynamically allocated variables of type Entry using a

privately-defined management algorithm and some pointers into that pool, a Euclid user writes

var Group: col lect ion of Entry in MyZone
type Item = ^Group

= ThisOne, ThatOne: Item

Variables are dynamically associated with ThisOne and ThatOne via calls on the standard

procedure Ncw that is associated with the collection Croup. Since a private storage

management module, MyZone, has been specified with the collection, the call on New will

invoke a function Allocate that must be provided with MyZone. The requirement on- the

specification of AlLocate is that it return a pointer to a suitable block of storage and that all

such pointers be guaranteed to point to different variables. MyZone must also supply a block

of storage in which to perform its storage management and a procedure DeaULcate that will

be called when the user invokes standard procedure Free. Deallocate is not required to do

anything in particular, but in most reasonable systems it will return the freed space to the

free list.

A completely safe and general solution to the storage allocation problem must also deal

with issues of type safety, garbage collection, and specifications about storage usage (i.e,

that storage is neither lost nor doubly-allocated).

4.4. Procedure Invocation

Pre-emptive decisions need not be limited to data and data-related aspects of a language.

Subprograms are a good example where the language designer selects a particular mix of

facilities and the implementor selects a single strategy for implementing that mix. Both the

designer and implementor have only notions of typical use available; they are making the

decisions too soon.

Some of the decisions that are typically made include:

- Whether to support coroutines or subroutines, or both. Shall the subprogram
units be recursive or re-entrant?

- Which parameter binding classes to provide -- e.g., ref. name (as in Algol 60),
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value, result (as in Algol W), etc.

- When parameters are to be bound and the order of binding them.

The language SL5 (Hanson 78] has provided a decomposition of subprogram invocation into

a number of events, and provided the programmer the means to define when those events

occur -- and to some extent, what Ihey are. The goals of the SL5 mechanism are not

precisely ours (this is reflected in the supporting syntax of their facility), and so it is not a
complete example of our proposed design approach. Nevertheless, it is an excellent example

of the kind of decomposition we are suggesting be done for many language features.

Briefly, in SL5 (as in Algo168) the textual form of a procedure is viewed as the literal

representation of a first-class object of the language -- that is an object that one can apply

operations to, that can be assigned, etc. Thus,

procedurc(xy) . . . Qni

is a constant of type procedure, and the statements

a : rocedure(xy) . . , ....
b Za

first assign this object to a and then to b. A procedure, however, is not an executable entity

-- an environncat is. An environment, or activation, is created from a procedure. Thus, if a

is the variable above,

e 1= create a:

will create an environment for the procedure. Given an environment, arguments can be bound

into the environment -- that is, a correspondence can be established between the actual and

formal parameters. This is accomplished by the with operator:
ew j (e 1 ,  . e . e )

The value of the with operator is the same environment, e, but with the formals (re)bound to

the actuals e, through en. Finally, given an environment with bound parameters, one can

cause it to begin execution. Since SL5 wishes to make no commitment to a decision between

subroutines and coroulines, the operator to initiate execulion is called resume.

resume e

The value of the resume operation is the value "returned" by the invoked procedure 6 .

OThe value returned actually consists of two components - a value and a ignatl This is not ementil to our point,
however.
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Before proceeding, two special cases are worth noting. The familiar syntax

f(a, b)

for function invocation is treated as a shorthand for

r'esurne(crete f y (ab))

which, obviously, has the expected semantics. Also, the statement return is considered to
mean "resume the last environment that resume'd me", with the caveat that "the last resumer"

does not include the last returner"; this too corresponds to the expected semantics.

SL5 also permits user control of the binding class of parameters too. A formal parameter
specification is of the form7

<id>:<exp>

where the expression, <exp>, defines something called a "transmitter". When arguments are
bound with a with expression, the actual parameters are first "passed" to the transmitter
associated with the formal; the value returned by the transmitter is actually bound to the
formal. Predefined transm+ilters include vat and ref for "by-value" and "by-reference" binding
respectively. I- general, however, any procedure can be used as a transmitter. This
provides an extremely powerful facility that can be used for type checking and other forms

of parameter validation in addition to the usual notions of binding.

5. Summary

Past investigation into abstraction techniques has concentrated on abstract data types and,
in particular, on "building up" -- creating "bigger" things out of "smaller" ones. In the
description of the bigger thing we suppress much of the detail about how it is constructed
out of the smaller ones; this is the source of our leverage and power. The leverage is

increased by generic definitions, which fix the essential properties of a type without
constraining irrelevant but visible detail.

We propose using the same point of view for organizing a language and in particular for
giving programmers control over invisible details. Instead of providing a language with
fully-defined features, let us try to provide skeleton definitions that guarantee the essential
semantics together with interface specifications for the parts that need to be filled in. In
essence, this amounts to defining "generic language features" with constraints on the
abstraction that can be provided to instantiate the generic features.

7 There is also a scope definilion as part of the formal parameler specificalion, but it is not essential here.
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